Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle \lim _{x \rightarrow 0} \frac{6^{x}-3^{x}-2^{x}+1}{x^{2}}$ is equal to

AP EAMCETAP EAMCET 2016

Solution:

We have,
$\displaystyle\lim _{x \rightarrow 0} \frac{6^{x}-3^{x}-2^{x}+1}{x^{2}}=\lim _{x \rightarrow 0} \frac{3^{x} \cdot 2^{x}-3^{x}-2^{x}+1}{x^{2}}$
$=\displaystyle\lim _{x \rightarrow 0} \frac{3^{x}\left(2^{x}-1\right)-1\left(2^{x}-1\right)}{x^{2}}$
$=\displaystyle\lim _{x \rightarrow 0} \frac{3^{x}-1}{x} \times \displaystyle\lim _{x \rightarrow 0} \frac{2^{x}-1}{x}$
$=\left(\log _{e} 2\right)\left(\log _{e} 3\right)$