Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \displaystyle \lim_{x\to0} \left\{\frac{1+tan\,x}{1+sin\,x}\right\}^{cosec\,x} $ is equal to

UPSEEUPSEE 2008

Solution:

$\lim _{x \rightarrow 0}\left\{\frac{1+\tan x}{1+\sin x}\right\}^{\operatorname{cosec} x}$
$=\lim _{x \rightarrow 0} \frac{\left[\left.\left(1+\frac{\sin x}{\cos x}\right)^{\frac{\cos x}{\sin x}}\right|^{1 / \cos x}\right.}{(1+\sin x)^{1 / \sin x}}$
$=\frac{e^{\lim _{x \rightarrow 0} \frac{1}{\cos x}}}{e}=\frac{e}{e}=1$