Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \displaystyle\lim_{x\rightarrow0} \frac{1}{3-2^{\frac{1}{x}}}$ is equal to

KEAMKEAM 2012Limits and Derivatives

Solution:

$\displaystyle \lim _{x \rightarrow 0^{-}} \frac{1}{3-2^{1 / x}}$
Put $x =0-h $
$\therefore \displaystyle \lim _{h \rightarrow 0} \frac{1}{3-2^{\frac{1}{0-h}}}$
$ =\displaystyle \lim _{h \rightarrow 0} \frac{1}{3-2^{-\frac{1}{h}}} $
$=\frac{1}{3-2^{-\frac{1}{0}}}=\frac{1}{3-2^{-\infty}} $
$=\frac{1}{3-0}=\frac{1}{3}$