Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle\lim _{\theta \rightarrow 0} \frac{\cos ^{2}\left(1-\cos ^{2}\left(1-\cos ^{2}\left(1 \ldots \cos ^{2} \theta\right)\right)\right.}{\sin \left(\frac{\pi(\sqrt{\theta+4}-2)}{\theta}\right)}=$

Limits and Derivatives

Solution:

$\displaystyle\lim _{\theta \rightarrow 0} \frac{\cos ^{2}\left(1-\cos ^{2}\left(1-\cos ^{2}\left(1 \ldots \cos ^{2} \theta\right)\right)\right.}{\sin \left(\frac{\pi(\sqrt{\theta+4}-2}{\theta}\right)}$
$=\displaystyle\lim _{\theta \rightarrow 0} \frac{\cos ^{2}\left(\sin ^{2}\left(\sin ^{2} \ldots\left(\sin ^{2} \theta\right)\right)\right.}{\sin \left(\frac{\pi(\sqrt{\theta+4}-2}{\theta}\right)}$
$=\displaystyle\lim _{\theta \rightarrow 0} \frac{\cos ^{2}\left(\sin ^{2}\left(\sin ^{2} \ldots\left(\sin ^{2} \theta\right)\right)\right.}{\sin \left(\pi \displaystyle\lim _{\theta \rightarrow 0} \frac{\theta}{\theta(\sqrt{\theta+4}+2)}\right)}$
$=\frac{\cos ^{2} 0}{\sin \frac{\pi}{4}}=\sqrt{2}$