Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle\lim _{t \rightarrow 0}\left(1^{\frac{1}{\sin ^2 t}}+2^{\frac{1}{\sin ^2 t}}+\ldots+n^{\frac{1}{\sin ^2 t}}\right)^{\sin ^2 t}$ is equal to

JEE MainJEE Main 2023Limits and Derivatives

Solution:

$ \displaystyle\lim _{t \rightarrow 0}\left(1^{\text{cosec}^2 t}+2^{\text{cosec}^2 t}+\ldots \ldots . .+n^{\text{cosec}^2 t}\right)^{\sin ^2 t} $
$ =\displaystyle\lim _{t \rightarrow 0} n\left(\left(\frac{1}{n}\right)^{\text{cosec}^2 t}+\left(\frac{2}{n}\right)^{\text{cosecs}^2 t}+\ldots \ldots . .+1\right)^{\sin ^2 t} $
$ = n $