Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle\lim _{n \rightarrow \infty} \tan \left\{\displaystyle\sum_{r=1}^{n} \tan ^{-1}\left(\frac{1}{1+r+r^{2}}\right)\right\}$ is equal to _______.

JEE MainJEE Main 2021Inverse Trigonometric Functions

Solution:

$\displaystyle\lim _{n \rightarrow a} \tan \left(\displaystyle\sum_{r=1}^{n} \tan ^{-1}\left(\frac{1}{1+r(r+1)}\right)\right)$
$=\displaystyle\lim _{n \rightarrow \alpha} \tan \left(\displaystyle\sum_{r=1}^{n} \tan ^{-1}\left(\frac{r+1-r}{1+r(r+1)}\right)\right)$
$=\tan \left(\displaystyle\lim _{n \rightarrow a} \displaystyle\sum_{r=1}^{n}\left[\tan ^{-1}(r+1)-\tan ^{-1}(r)\right]\right)$
$=\tan \left(\displaystyle\lim _{n \rightarrow \infty}\left(\tan ^{-1}(n+1)-\frac{\pi}{4}\right)\right)$
$=\tan \left(\frac{\pi}{4}\right)=1$