Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle \lim_{n \to\infty} \frac{1^{p} + 2^{p} +3^{p} +....+n^{p}}{n^{p+1}} $ is

IIT JEEIIT JEE 2002Limits and Derivatives

Solution:

We have $\displaystyle \lim_{n \to\infty} \frac{1^{p} + 2^{p} +....+n^{p}}{n^{p+1}}; $
$\displaystyle \lim_{n \to\infty} \sum^{n}_{r=1} \frac{r^{p}}{n^{p}.n} = \int \limits^{1}_{0} x^{p}dx = \left[\frac{x^{p+1}}{p+1}\right]_{0}^{1} = \frac{1}{p+1} $