Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle \int \frac{x^{2} - 2}{x^{4} + 4}dx$ is equal to (where $C$ is constant of integration)

NTA AbhyasNTA Abhyas 2022

Solution:

$\displaystyle \int \frac{x^{2} - 2}{x^{4} + 4}dx\Rightarrow \displaystyle \int \frac{1 - \frac{2}{x^{2}}}{x^{2} + \frac{4}{x^{2}}}dx$
$\displaystyle \int \frac{1 - \frac{2}{x^{2}}}{\left(x + \frac{2}{x}\right)^{2} - 4}dx$
Put $\left(x + \frac{2}{x}\right)=t$
$\displaystyle \int \frac{d t}{t^{2} - 4}$
$\frac{1}{4}log\left|\frac{t - 2}{t + 2}\right|+C=\frac{1}{4}log\left|\frac{x^{2} - 2 x + 2}{x^{2} + 2 x + 2}\right|+C$