Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle \int e^{sec x}\cdot \left(sec\right)^{3}x\left(\left(sin\right)^{2} x + cos x + sin x + sin x cos x\right)dx$ is equal to (where $c$ is the constant of integration)

NTA AbhyasNTA Abhyas 2022

Solution:

$I=\displaystyle \int e^{sec x}\left(sec\right)^{3}x\left(\left(sin\right)^{2} x + cos x + sin x + sin x cos x\right)dx$
$\Rightarrow I=\displaystyle \int e^{sec x}\cdot secx\left(\left(tan\right)^{2} x + sec x + sec x tan x + tan x\right)dx$
$=\displaystyle \int e^{sec x}\cdot secx\left(tan x + 1\right)\left(sec x + tan x\right)dx$
$=\displaystyle \int e^{sec x}secxtanx\left(sec x + tan x\right)dx+\displaystyle \int e^{sec x}\cdot \left(\left(sec\right)^{2} x + sec x tan x\right)dx$
$=\left(sec x + tan x\right)e^{sec x}-\displaystyle \int e^{sec x}\cdot \left(sec x tan x + \left(sec\right)^{2} x\right)dx+\displaystyle \int e^{sec x}\left(sec x tan x + \left(sec\right)^{2} x\right)+c$
$=e^{sec x} \left(sec x + tan x\right)+c$