Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle \int \frac{4e^{x}}{2e^{x}-5e^{-x}}dx=$dX is equal to

KEAMKEAM 2015Integrals

Solution:

Let $ I =\int \frac{4 e^{x}}{2 e^{x}-5 e^{-x}} d x$
$=\int \frac{4 e^{x}}{2 e^{x}-\frac{5}{e^{x}}} d x $
$=\int \frac{4 e^{2 x}}{2 e^{2 x}-5} d x $
$ \operatorname{Put} 2 e^{2 x} -5=t $
$ \Rightarrow 4 e^{2 x} d x=d t $
$ \therefore I =\int \frac{d t}{t} $
$=\log |t|+C $
$ \Rightarrow I =\log \left|2 e^{2 x}-5\right|+C $