Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle\int_{0}^{\infty}\frac{dx}{(x+\sqrt{x^2+1})^3 }=$

Integrals

Solution:

Put $x = tan \, \theta \therefore dx=sec^{2} \, \theta\,d\theta$
When $x = 0, \theta=0, x=\infty, \theta=\pi /2$
$\therefore $ given integral
$=\int\limits_{0}^{\pi /2} \frac{cos\, \theta d\theta}{\left(1+sin\,\theta\right)^{3}}=\left|\frac{\left(1+sin\,\theta\right)^{-2}}{-2}\right|_{0}^{\pi /2}$
$=-\frac{1}{8}+\frac{1}{2}=\frac{3}{8}$