Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int_{0}^{1} \frac{1}{\left(x^{2}+16\right)\left(x^{2}+25\right)} \,dx$ is equal to

KEAMKEAM 2015Integrals

Solution:

$ I =\int_{0}^{1} \frac{1}{\left(x^{2}+16\right)\left(x^{2}+25\right)} d x$
$=\frac{1}{9} \int_{0}^{1}\left(\frac{1}{x^{2}+16}-\frac{1}{x^{2}+25}\right) d x$
$=\frac{1}{9}\left[\frac{1}{4} \tan ^{-1} \frac{x}{4}-\frac{1}{5} \tan ^{-1} \frac{x}{5}\right]_{0}^{1} $
$=\frac{1}{9}\left[\frac{1}{4} \tan ^{-1}\left(\frac{1}{4}\right)-\frac{1}{5} \tan ^{-1}\left(\frac{1}{5}\right)\right]$