Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Diamonds are formed from graphite under high pressure in coal mines. Calculate the equilibrium pressure (in atm) at which graphite is converted to diamonds at $25^{\circ} C$ (assumed constant) given densities of $\rho_{\text {graphite }}=2 g / c c \& \rho_{\text {diamond }}=3 g / c c \left(\Delta G_{f}^{o}\right)$ for diamonds is $3 kJm ^{-1}$ from graphite

NTA AbhyasNTA Abhyas 2020Thermodynamics

Solution:

Differential equation of free energy dG = VdP - SdT at constant temp. with change in allotropic modification there is a change in molar volume $\therefore$ $\mathrm{d}(\Delta \mathrm{G})=(\Delta \mathrm{V}) \mathrm{dP}$.
$\Delta \mathrm{V}=\frac{\mathrm{M}_{\text {Diamond }}}{\rho_{\text {Diamond }}}-\frac{\mathrm{M}_{\text {graphite }}}{\rho_{\text {graphite }}}=\frac{12}{3}-\frac{12}{2} $
$\Delta \mathrm{V}=-2 \mathrm{~cm}^3 / \mathrm{mole}=-2 \times 10^{-6} \mathrm{~m}^3 \mathrm{~mole}^{-1} $
$\Delta \mathrm{G}_{\mathrm{f}}^{\mathrm{o}} \text { at } 298 \mathrm{~K}, \mathrm{p} \text { atm }=0 $
$\int \mathrm{d}(\Delta \mathrm{G})^{=}=-2 \times 10^{-6} \mathrm{~m}^3 \mathrm{~mole}^{-1} \mathrm{P}=\mathrm{patm} $
$\Delta \mathrm{G}_{\mathrm{f}}^0 \text { at } 298 \mathrm{~K}, 1 \mathrm{~atm} $
$\mathrm{P}=1 \mathrm{~atm} $
Because at equilibrium when diamonds are formed both the phases are in equilibrium $\Delta \mathrm{G}_{\mathrm{f}(\text { Diamonds })}^{\mathrm{o}}$ at $298 \mathrm{~K}, \mathrm{P}$ atm $=0$
$\int^0 \mathrm{~d}(\Delta \mathrm{G})=-2 \times 10^{-6} \mathrm{~m}^3 \mathrm{~mole}^{-1} \times 10^5 \mathrm{Nm}^{-2} \int \mathrm{P}=\mathrm{patm} $
$3000 \mathrm{~J} \mathrm{~mole}^{-1} P=1 \mathrm{~atm} $
$\left(1 \mathrm{~atm}=10^5 \mathrm{Nm}^{-2}\right. \text { ) } $
$0-3000 \text { Joules mole }{ }^{-1}=-2 \times 10^{-1} \mathrm{~J} \mathrm{~mole}^{-1}(\mathrm{P}-1) $
$\frac{3000}{0.2}=15000=(\mathrm{P}-1) $
$\therefore P=15001 \text { atm. } $