Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Derivative of $log_{e^{2}} \left(log\,x\right)$ with respect to $x$ is $\ldots\ldots$

MHT CETMHT CET 2019

Solution:

Let $y=\log _{e^{2}}(\log x)$
$\Rightarrow y=\frac{1}{2} \log _{e}(\log x)$
$\left(\because \log _{a^{n}}(x)=\frac{1}{n} \log _{a} x\right)$
On differentiating both sides w.r.t. $x,$ we get
$\frac{d y}{d x} =\frac{1}{2} \frac{1}{\log x} \frac{d}{d x}(\log x)$
$=\frac{1}{\log x^{2}} \cdot \frac{1}{x}=\frac{1}{x \log x^{2}}$