Thank you for reporting, we will resolve it shortly
Q.
$ \Delta_{1}=\begin{vmatrix}x&b&b\\ a&x&b\\ a&a&x\end{vmatrix} and \Delta_{2} =\begin{vmatrix}x&b\\ a&x\end{vmatrix}$ are the given determinants, then
Determinants
Solution:
$ \Delta_{1} =x\left(x^{2}-a b\right)-b(a x-a b)+b\left(a^{2}-a x\right)$
$=x^{3}-3 a b x+a b^{2}+a^{2} b $
$ \therefore \frac{d}{d x}\left(\Delta_{1}\right)=3 x^{2}-3 a b=3\left(x^{2}-a b\right)=3 \Delta_{2} $