Let a hyperbola, $ \frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1 $ ?(i) and its conjugate hyperbola $ -\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1 $ Eccentricities of the hyperbolas (i) and (ii) are given by $ {{e}^{2}}=\frac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}} $ and $ e{{}^{2}}=\frac{{{a}^{2}}+{{b}^{2}}}{{{b}^{2}}} $ respectively Now, $ \frac{1}{{{e}^{2}}}+\frac{1}{e{{}^{2}}}=\frac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}}+\frac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}} $ $ =\frac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=1 $