Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\frac{d}{dx}\left\{cosec^{-1}\left(\frac{1+x^{2}}{2x}\right)\right\}$ is equal to

Continuity and Differentiability

Solution:

let $ y = cosec^{-1} \left(\frac{1+x^{2}}{2x}\right)$
$y = sin^{-1}\left(\frac{2x}{1+x^{2}}\right)$
put $x = tan \theta, \,\,\, \theta = tan^{-1}x$
$= sin^{-1}\left(\frac{2 tan \theta}{1+tan^{2} \theta}\right)$
$= sin^{-1} (sin 2\theta)$
$y = 2\theta = 2tan^{-1}x$
$\frac{dy}{dx} = \frac{2}{1+x^2}$
$\therefore \frac{2}{1+x^{2}}$, $x \ne0 is correct $