Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \frac{{{d}^{20}}}{d{{x}^{20}}}(2\cos x\cos 3x) $ is equal to:

KEAMKEAM 2000

Solution:

$ \therefore $ $ 2\text{ }cos\text{ }x\text{ }cos\text{ }3x=cos\text{ }4x+cos\text{ }2x $ $ \therefore $ $ \frac{d}{dx}(~2\text{ }cos\text{ }x\text{ }cos\text{ }3x)=\frac{d}{dx}(cos\text{ }4x+cos\text{ }2x) $ $ =-4\text{ }sin\text{ }4x-2\text{ }sin\text{ }2x $ $ \frac{{{d}^{2}}}{d{{x}^{2}}}(2\cos x\cos 3x)=-16\cos 4x-4cos2x $ $ \therefore $ $ \frac{{{d}^{20}}}{d{{x}^{20}}}(2\cos x\cos 3x) $ $ ={{4}^{20}}\,\cos 4x\,+{{(2)}^{20}}\cos 2x $ $ ={{2}^{20}}({{2}^{20}}\cos 4x+\cos 2x) $