Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Crystal diffraction experiments can be performed either by using electrons accelerated through appropriate voltage or by using X-rays. If the wavelength of these probes (electrons or X-rays) is $1 \mathring{A}$, estimate which of the two has greater energy?

Dual Nature of Radiation and Matter

Solution:

For an accelerated electron beam, the de-Broglie matter wave equation states that
$\lambda=\frac{h}{\sqrt{2 e m V}}=\frac{h}{\sqrt{2 m K}} $
$\Rightarrow K=\frac{h^{2}}{2 m \lambda^{2}}$
For X-rays, photon of same wavelength $\lambda=1 \,\mathring{A}$
$E'=h v=\frac{h c}{\lambda}$ or
$ \frac{K}{E'}=\frac{\frac{h^{2}}{2 m \lambda^{2}}}{\frac{h c}{\lambda}}$
or $\frac{K}{E'}=\frac{h^{2}}{2 m \lambda^{2}} \times \frac{\lambda}{h c}$
$=\frac{h}{2 m c \lambda}$
$\therefore \frac{K}{E'}=\frac{h}{2 m c \lambda}$
Where $h=6.6 \times 10^{-34} J s $,
$ m=9 \cdot 1 \times 10^{-31} kg$
$c=3 \times 10^{8} m / s \lambda=1 \,\mathring{A}=10^{-10} m$
$\frac{K}{E'}=\frac{6.6 \times 10^{-34}}{2 \times 9.1 \times 10^{-31} \times 3 \times 10^{8} \times 10^{-10}}=\frac{11}{911}$
$\Rightarrow K < E'$
$\therefore $ Energy possessed by $X$ -ray is more than electron.