Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
operatornameCot 12° Cot 102°+ operatornameCot 102° operatornameCot 66°+ operatornameCot 66° operatornameCot 12θ= ldots ldots ldots ldots
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. $\operatorname{Cot} 12^{\circ} Cot 102^{\circ}+\operatorname{Cot} 102^{\circ} \operatorname{Cot} 66^{\circ}+\operatorname{Cot} 66^{\circ} \operatorname{Cot} 12^{\theta}=\ldots \ldots \ldots \ldots $
KCET
KCET 2010
Trigonometric Functions
A
$-1$
13%
B
$2$
17%
C
$-2$
14%
D
$1$
56%
Solution:
$\cot 12^{\circ} \cdot \cot 102^{\circ}+\cot 102^{\circ} \cdot \cot 66^{\circ}
+\cot 66^{\circ} \cdot \cot 12^{\circ}$
$ = \cot 12^{\circ} \cdot \cot (90^{\circ}+12^{\circ})+ \cot (90^{\circ}+12^{\circ}) \cdot \cot 66^{\circ} +\cot 66^{\circ} \cdot \cot 12^{\circ}$
$=-\cot 12^{\circ} \cdot \tan 12^{\circ}-\tan 12^{\circ} \cdot \cot 66^{\circ} +\cot 66^{\circ} \cdot \cot 12^{\circ}$
$=-1+\cot 66^{\circ} \cdot\left\{\cot 12^{\circ}-\tan 12^{\circ}\right\}$
$=-1+\cot 66 \cdot\left\{\frac{1-\tan ^{2} 12^{\circ}}{\tan 12^{\circ}}\right\}$
$=-1+2 \cot 66^{\circ} \cdot\left\{\frac{\cot ^{2} 12^{\circ}-1}{2 \cot 12^{\circ}}\right\}$
$=-1+2 \cot 66^{\circ} \cot 24^{\circ}$
$=-1+2 \cot 66^{\circ} \cdot \cot \left(90^{\circ}-66^{\circ}\right)$
$=-1+2 \cot 66^{\circ} \cdot \tan 66^{\circ}$
$=2-1=1$