Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\cos (A+B) \cdot \cos (A-B)$ is given by:

Trigonometric Functions

Solution:

$\cos (A+B) \cdot \cos (A-B)=(\cos A \cos B-\sin A \sin B)$
$(\cos A \cos B+\sin A \sin B)$
$=\cos ^{2} A \cos ^{2} B-\sin ^{2} A \sin ^{2} B$
$=\cos ^{2} A(1-\cos A \cos B+\sin A \sin B)$
$=\cos ^{2} A-\cos ^{2} B \sin ^{2} B-\sin ^{2} A \sin ^{2} B$
$=\cos ^{2} A-\sin ^{2} B\left(\cos ^{2} A+\sin ^{2} A\right)=\cos ^{2} A-\sin ^{2} B$