Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\cos^{2} \left(\frac{\pi}{6} + \theta\right) - \sin^{2} \left(\frac{\pi}{6} - \theta\right) = $

BITSATBITSAT 2014

Solution:

$\cos^{2} \left(\frac{\pi}{6} + \theta\right) - \sin^{2} \left(\frac{\pi}{6} - \theta\right) $
$= \cos\left(\frac{\pi}{6} + \theta + \frac{\pi}{6} - \theta\right)\cos \left(\frac{\pi}{6} + \theta- \frac{\pi}{6} + \theta\right) $
$= \cos \frac{2\pi}{6} \cos2 \theta = \frac{1}{2} \cos2\theta$