Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
cos 2 5°- cos 2 15°- sin 2 15°+ sin 2 35° + cos 15° sin 15°- cos 5° sin 35°=
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. $\cos ^{2} 5^{\circ}-\cos ^{2} 15^{\circ}-\sin ^{2} 15^{\circ}+\sin ^{2} 35^{\circ}$ $+\cos 15^{\circ} \sin 15^{\circ}-\cos 5^{\circ} \sin 35^{\circ}=$
AP EAMCET
AP EAMCET 2019
A
0
0%
B
1
0%
C
$\frac{3}{2}$
100%
D
2
0%
Solution:
$\cos ^{2} 5^{\circ}-\cos ^{2} 15^{\circ}-\sin ^{2} 15^{\circ}+\sin ^{2} 35^{\circ}$
$+\cos 15^{\circ} \sin 15^{\circ}-\cos 5^{\circ} \sin 35^{\circ}$
$=\cos 5^{\circ}\left(\cos 5^{\circ}-\sin 35^{\circ}\right)-\cos 15^{\circ}\left(\cos 15^{\circ}-\sin 15^{\circ}\right)$
$+\sin ^{2} 35^{\circ}-\sin ^{2} 15^{\circ}$
$=\cos 5^{\circ}\left(\cos 5^{\circ}-\cos 55^{\circ}\right)-\cos 15^{\circ}\left(\cos 15^{\circ}-\cos 75^{\circ}\right)$
$+\sin 50^{\circ} \sin 20^{\circ}$
$=\cos 5^{\circ}\left(2 \sin 30^{\circ} \sin 25^{\circ}\right)-\cos 15^{\circ}\left(2 \sin 45^{\circ} \sin 30^{\circ}\right)$
$+\sin 50^{\circ} \sin 20^{\circ}$
$=-\frac{\cos 15^{\circ}}{\sqrt{2}}+\cos 5^{\circ} \sin 25^{\circ}+\sin 50^{\circ} \sin 20^{\circ}$
$=-\frac{\cos 15^{\circ}}{\sqrt{2}}+\frac{1}{2}\left(2 \cos 5^{\circ} \cos 65^{\circ}\right)+\frac{1}{2}\left(2 \sin 50^{\circ} \sin 20^{\circ}\right)$
$=-\frac{\cos 15^{\circ}}{\sqrt{2}}+\frac{1}{2}\left[\cos 70^{\circ}+\cos 60^{\circ}+\cos 30^{\circ}-\cos 70^{\circ}\right]$
$=-\frac{\cos 5^{\circ}}{\sqrt{2}}+\frac{1}{2}\left[2 \cos 45^{\circ} \cos 15^{\circ}\right]$
$=-\frac{\cos 15^{\circ}}{\sqrt{2}}+\frac{\cos 15^{\circ}}{\sqrt{2}}=0$