Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ {{\cos }^{-1}}\left( \frac{3+5\cos x}{5+3\cos x} \right) $ is equal to:

KEAMKEAM 2005

Solution:

$ {{\cos }^{-1}}\left( \frac{3+5\cos x}{5+3\cos x} \right) $
$ ={{\cos }^{-1}}\left\{ \frac{3+5\left( \frac{1-{{\tan }^{2}}x/2}{1+{{\tan }^{2}}x/2} \right)}{5+3\left( \frac{1-{{\tan }^{2}}x/2}{1+{{\tan }^{2}}x/2} \right)} \right\} $
$ ={{\cos }^{-1}}\left( \frac{4-{{\tan }^{2}}x/2}{4+{{\tan }^{2}}x/2} \right) $
$ ={{\cos }^{-1}}\left\{ \frac{1-{{\left( \frac{1}{2}\tan x/2 \right)}^{2}}}{1+{{\left( \frac{1}{2}\tan x/2 \right)}^{2}}} \right\} $
$ =2{{\tan }^{-1}}\left( \frac{1}{2}\tan \frac{x}{2} \right) $