Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Considering only the principal values of the inverse trigonometric functions, the domain of the function $f(x)=\cos ^{-1}\left(\frac{x^2-4 x+2}{x^2+3}\right)$ is :

JEE MainJEE Main 2022Inverse Trigonometric Functions

Solution:

$ \left|\frac{x^2+4 x+2}{x^2+3}\right| \leq 1$
$ \Leftrightarrow \left(x^2-4 x+2\right)^2 \leq\left(x^2+3\right)^2$
$\Leftrightarrow \left(x^2-4 x+2\right)^2-\left(x^2+3\right)^2 \leq 0 $
$\Leftrightarrow \left(2 x^2-4 x+5\right)(-4 x-1) \leq 0 $
$ \Leftrightarrow -4 x-1 \leq 0 \rightarrow x \geq-\frac{1}{4}$