Q. Consider two lines $L_{1}: \frac{x-7}{3}=\frac{y-7}{2}=\frac{z-3}{1}$ and $L_{2}:$ $\frac{x-1}{2}=\frac{y+1}{4}=\frac{z+1}{3}$. If a line $L$ whose direction ratios are $\langle 2,2,1\rangle$ intersect the lines $L_{1}$ and $L_{2}$ at $A$ and $B$ then the distance $A B$ is
Three Dimensional Geometry
Solution: