Q. Consider three vectors $\left(\overset{ \rightarrow }{V}\right)_{1}=\left(sin \theta \right)\hat{i}+\left(cos \theta \right)\hat{j}+\left(a - 3\right)\hat{k}$ , $\left(\overset{ \rightarrow }{V}\right)_{2}=\left(sin \theta + cos \theta \right)\hat{i}+\left(cos \theta - sin \theta \right)\hat{j}+\left(b - 4\right)\hat{k}$ and $\left(\overset{ \rightarrow }{V}\right)_{3}=\left(cos \theta \right)\hat{i}+\left(sin \theta \right)\hat{j}+\left(c - 5\right)\hat{k}$ . If the resultant of $\overset{ \rightarrow }{V}_{1},\overset{ \rightarrow }{V}_{2}$ and $\overset{ \rightarrow }{V}_{3}$ is equal to $\lambda \hat{i}$ , where $\theta \in \left[- \pi , \pi \right]$ and $a,b,c\in N$ , then the number of quadruplets $\left(a , b , c , \theta \right)$ are
NTA AbhyasNTA Abhyas 2020Vector Algebra
Solution: