Q.
Consider three sequences an A.P., a.G.P. and a H.P. as follows
a, $A _1, A _2, A _3, \ldots \ldots . . . . . . . A _9$, b (A.P.)
a, $G _1, G _2, G _3, \ldots \ldots . . . . . . G _9, b$ (G.P.)
a, $H _1, H _2, H _3, \ldots \ldots . . . . . . . H _9, b$ (H.P.)
If $a, b$ are the roots of the equation $x^2-(p+1) x+16=0, p \in R$, then the value of $\displaystyle\prod_{r=1}^4 A_r H_{10-r} G_{10-2 r}$ is
Sequences and Series
Solution: