Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Consider the probability distribution of a random variable $X$
$X$ 0 1 2 3 4
$P(X)$ 0.1 0.25 0.3 0.2 0.15
Statement I The value of $V\left(\frac{X}{2}\right)$ is $0.3618$.
Statement II The variance of $X$ is $1.4475$.
Choose the correct option.

Probability - Part 2

Solution:

Here,
$X$ $P(X)$ $XP(X)$ $X^2P(X)$
0 0.10 0 0
1 0.25 0.25 0.25
2 0.30 0.60 1.20
3 0.20 0.60 1.80
4 0.15 0.60 2.40

Now, $ \mu=\Sigma X P(X)=2.05$
and $ \text{var}(X)=\Sigma X^2 P(X)-\mu^2 \left[\because \mu=2.05, X^2 P(X)=5.65\right]$
$=5.65-(2.05)^2$
$=5.65-42025$
$=1.4475$
I. $V\left(\frac{X}{2}\right)=\frac{1}{4} \times V(X)$
$=\frac{1}{4} \times 1.4475$
$=0.3618$
II. $V(X)=1.4475$