Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Consider the locus of the complex number $z$ in the argand plane given by $\operatorname{Re}(z)-2=\mid z-7+$ $2 i \mid$.
Let $P \left( z _1\right)$ and $Q \left( z _2\right)$ be two complex numbers satisfying the given locus and also satisfying $\arg \left(\frac{z_1-(2+\alpha i)}{z_2-(2+\alpha i)}\right)=\frac{\pi}{2}(\alpha \in R)$. Find the minimum value of PQ.
[Note: $\operatorname{Re}(z)$ denotes real part of complex number $z$ and $i^2=-1.$

Complex Numbers and Quadratic Equations

Solution:

image
Given, $\operatorname{Re}(z)-2=|z-7+2 i|$
$\Rightarrow ( x -2)^2=( x -7)^2+( y +2)^2$
$\Rightarrow ( y +2)^2=10\left( x -\frac{9}{2}\right)$
So, the given locus is that of a parabola with directrix $x=2$ and focus $(7,-2)$.
Clearly, minimum $PQ =l( L . R )=$.10