Q.
Consider the locus of the complex number $z$ in the argand plane given by $\operatorname{Re}(z)-2=\mid z-7+$ $2 i \mid$.
Let $P \left( z _1\right)$ and $Q \left( z _2\right)$ be two complex numbers satisfying the given locus and also satisfying $\arg \left(\frac{z_1-(2+\alpha i)}{z_2-(2+\alpha i)}\right)=\frac{\pi}{2}(\alpha \in R)$. Find the minimum value of PQ.
[Note: $\operatorname{Re}(z)$ denotes real part of complex number $z$ and $i^2=-1.$
Complex Numbers and Quadratic Equations
Solution: