Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Consider the line $L\equiv \frac{x - 1}{2}=\frac{y + 2}{3}=\frac{z - 7}{6}.$ Point $P\left(2 , - 5,0\right)$ and $Q$ are such that $PQ$ is perpendicular to the line $L$ and the midpoint of $PQ$ lies on line $L,$ then coordinates of $Q$ are

NTA AbhyasNTA Abhyas 2020

Solution:

$Q$ is reflection of $P$ about line $L$
Solution
Coordinate of point $R$ are $(2 \lambda+1,3 \lambda-2,6 \lambda+7)$ $\overrightarrow{P R}=\langle 2 \lambda-1,3 \lambda+3,6 \lambda+7\rangle$
From diagram $\overrightarrow{P R} \cdot(2 \hat{i}+3 \hat{j}+6 \hat{k})=0$
$4 \lambda-2+9 \lambda+9+36 \lambda+42=0$
$49 \lambda+49=0 \Rightarrow \lambda=-1$
So, coordinates of $R$ are (-1,-5,1)
$\Rightarrow $ coordinates of $Q$ are (-4,-5,2)