Q.
Consider the functions defined implicitly by the equation $y^{3}-3 y+x=0$ on various intervals in the real line.
If $x \in(-\infty,-2) \cup(2, \infty)$, the equation implicitly defines a unique real valued differentiable function $y=f(x)$.
If $x \in(-2,2)$, the equation implicitly defines a unique real valued differentiable function $y=g(x)$ satisfying $g(0)=0$
$\int\limits_{-1}^{1} g'(x) d x=$
JEE AdvancedJEE Advanced 2008
Solution: