Q.
Consider the function $f(x)=\begin{cases}x(x-1) e^{2 x}, & \text { if } x \leq 0 \\ x(1-x) e^{-2 x}, & \text { if } x>0\end{cases}$.
Then $f ( x )$ attains its greatest value at
Application of Derivatives
Solution:
Global maximum at $x=\frac{-1}{\sqrt{2}} ; \quad \because f\left(-\frac{1}{\sqrt{2}}\right)> f \left(1-\frac{1}{\sqrt{2}}\right)$
