Q.
Consider the function:
$f \left(x\right)=\left[x\right]+\left|1-x\right|, -1 \le x \le3$ where $\left[x\right]$ is the greatest integer function.
Statement 1: $f$ is not continuous at $x = 0, 1,2$ and $3$.
Statement 2 : $f(x) =
\begin{cases}
-x, & -1 \le x < 0 \\
1-x & 0 \le x < 1\\
1 + x & 1 \le x < 2 \\
2 + x &2\le x \le 3
\end{cases} $
Solution: