Q.
Consider the following statements
Statement I $y=f(x)$ is a curve and $A(x)$ is the area bounded by the curve $f(x), x=a$ and $x=b$, then $A(x)=\int\limits_a^x f(x) d x \forall x \in[a, b]$, if $f(x)>0$
Statement II If $A(x)=\int\limits_a^b f(x) d x+\left|\int\limits_b^b f(x) d x\right| $ if $f(x)>0$ for $x \in[a, b]$ and $(x) < 0$ for $x \in[b, c]$ Choose the correct option.
Integrals
Solution: