Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Consider the following statements
Statement I The range of the function $f(x)=2-3 x, x \in R, x>0$ is $R$.
Statement II The range of the function $f(x)=x^2+2$ is $R$
Coose the correct option.

Relations and Functions

Solution:

I. We have, $f(x)=2-3 x, x \in R, x>0$
Let $f(x)=y$, then
$y =2-3 x$
$\Rightarrow 3 x =2-y $
$\Rightarrow x =\frac{2-y}{3}$
$\because x >0$
$\Rightarrow \frac{2-y}{3}>0$
$\Rightarrow 2-y>0$
$\Rightarrow 2 >y $
$\therefore y< 2$
Hence, range of $f=(-\infty, 2)$
$\therefore$ Statement I is false.
II. Now, $f(x)=x^2+2$
Let $y=f(x)$, then
$y=x^2+2$
$\Rightarrow x=\sqrt{y-2}$
$x$ assumes real values, if $y-2 \geq 0$
$\Rightarrow y \geq 2$
$\Rightarrow y \in[2, \infty]$
$\therefore$ Range of $f=[2, \infty]$