Q.
Consider the following statements
Statement I If $\int f(x) d x=g(x), $ then $\int f(x) g(x) d x$ is equal to $\frac{1}{2}[g(x)]$.
Statement II If $f(x)=\frac{\sin ^{-1} x}{\sqrt{1-x^2}}$ and $g(x)=e^{\sin ^{-1} x}$, then $\int f(x) g(x) d x$ is equal to $e^{\sin ^{-1} x}\left(\sin ^{-1} x+1\right)+C$
Choose the correct option.
Integrals
Solution: