Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Consider the following statements.
$I$. Let $z_{1}$ and $z_{2}$ be two complex numbers such that $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$ then $\arg \left(z_{1}\right)-\arg \left(z_{2}\right)=0$
$II$. Roots of quadratic equation
$x^{2}+3 x+5=0$ is $x=\frac{-3 \pm i \sqrt{11}}{2}$
Choose the correct option

Complex Numbers and Quadratic Equations

Solution:

II. $x^{2}+3 x+5=0$
$x=\frac{-3 \pm \sqrt{(3)^{2}-4(5)}}{2}=\frac{-3 \pm \sqrt{9-20}}{2}$
$=\frac{-3 \pm \sqrt{11} i}{2}$