Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Consider the following reactions in which all the reactants and the products are in gaseous state.

$2PQ \rightleftharpoons P_{2}+Q_{2};K_{1}=2.5\times 10^{5}$

$PQ+1/2R_{2} \rightleftharpoons PQR;K_{2}=5\times 10^{- 3}$

The value of $K_{3}$ for the equilibrium

$1/2P_{2}+1/2Q_{2}+1/2R_{2} \rightleftharpoons PQR$ is

NTA AbhyasNTA Abhyas 2020Some Basic Concepts of Chemistry

Solution:

Given , $2PQ\rightleftharpoons P_{2}+Q_{2};$

$K_{1}=\frac{\left[\right. P_{2} \left]\right. \left[\right. Q_{2} \left]\right.}{\left[\right. P Q \left]\right.^{2}}=2.5\times 10^{5}$

$PQ+1/2R_{2}\rightleftharpoons PQR;$

$K_{2}=\frac{\left[\right. P Q R \left]\right.}{\left[\right. P Q \left]\right. \left[\right. R_{2} \left]\right.^{1 / 2}}$

$=5\times 10^{- 3}$

For the required equilibrium

$1/2P_{2}+1/2Q_{2}+1/2R_{2} \rightleftharpoons PQR;$

$K_{3}=\frac{\left[\right. P Q R \left]\right.}{\left[\right. P_{2} \left]\right.^{1 / 2} \left[\right. Q_{2} \left]\right.^{1 / 2} \left[\right. R_{2} \left]\right.^{1 / 2}}$

$K_{3}=K_{2}\times \sqrt{\frac{1}{K_{1}}}$

$=5\times 10^{- 3}\times \sqrt{\frac{1}{2.5 \times 1 0^{5}}}=\frac{5 \times 1 0^{- 3}}{0.5 \times 1 0^{3}}$

$=1\times 10^{- 5}$