Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Consider the following reactions in which all the reactants and the products are in gaseous state.
$ 2PQ \rightleftharpoons {{P}_{2}}+{{Q}_{2}}; $ $ {{K}_{1}}=2.5\times {{10}^{5}} $
$ PQ+\frac{1}{2}{{R}_{2}} \rightleftharpoons PQR; $ $ {{K}_{2}}=5\times {{10}^{-3}} $
The value of $ {{K}_{3}} $ for the equilibrium
$ \frac{1}{2}{{P}_{2}}+\frac{1}{2}{{Q}_{2}}+\frac{1}{2}{{R}_{2}} \rightleftharpoons PQR, $ is

KEAMKEAM 2010Equilibrium

Solution:

Given, $ 2PQ{{P}_{2}}+{{Q}_{2}}; $
$ {{K}_{1}}=\frac{[{{P}_{2}}][{{Q}_{2}}]}{{{[PQ]}^{2}}}=2.5\times {{10}^{5}} $
$ PQ+\frac{1}{2}{{R}_{2}}PQR; $
$ {{K}_{2}}=\frac{[PQR]}{[PQ]{{[{{R}_{2}}]}^{1/2}}}=5\times {{10}^{-3}} $
Required equilibrium is $ \frac{1}{2}{{P}_{2}}+\frac{1}{2}{{Q}_{2}}+\frac{1}{2}{{R}_{2}}PQR $
$ {{K}_{3}}=\frac{[PQR]}{{{[{{P}_{2}}]}^{1/2}}{{[{{Q}_{2}}]}^{1/2}}{{[{{R}_{2}}]}^{1/2}}} $
On multiplying and dividing by $ [PQ], $
$ {{K}_{3}}=\frac{[PQR]}{{{[{{P}_{2}}]}^{1/2}}{{[{{Q}_{2}}]}^{1/2}}{{[{{R}_{2}}]}^{1/2}}[PQ]} $
Or $ {{K}_{3}}={{K}_{2}}\times \sqrt{\frac{1}{{{K}_{1}}}} $
$ =5\times {{10}^{-3}}\times \sqrt{\frac{1}{2.5\times {{10}^{5}}}} $
$ =\frac{5\times {{10}^{-3}}}{0.5\times {{10}^{3}}}=1\times {{10}^{-5}} $