Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Consider the following population and year graph.
image
I. Slope of $A B=\frac{1}{2}$.
II. Population in the year $2010$ is $104.5$ crore.

Straight Lines

Solution:

Let the population in the year $2010$ will be $k$ crore. Since, $A, B$ and $C$ are collinear.
image
$\therefore $ Slope of $A B=$ Slope of $B C$
$\Rightarrow \frac{y_2-y_1}{x_2-x_1}=\frac{y_3-y_2}{x_3-x_2}$
$ \Rightarrow \frac{97-92}{1995-1985}=\frac{k-97}{2010-1995}$
$ \left( \because x_1=1985, x_2=1995, x_3=2010, y_1=92, y_2=97, y_3=k\right)$
$ \Rightarrow \frac{5}{10}=\frac{k-97}{15} $
$ \Rightarrow \frac{1}{2}=\frac{k-97}{15} $
$ \Rightarrow k-97=\frac{15}{2} $
$\Rightarrow k=97+\frac{15}{2}=97+7.5=104.5 $
Hence, slope of $ A B=\frac{1}{2}$
and population in the year $2010=104.5$ crore.