Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Consider the following parallel reactions being given by $A \left( t _{1 / 2}=\right.$ $1.386 \times 10^{2}$ hours), each path being $1^{\text {st }}$ order.
Question
If distribution of $A$ in the product mixture is $50\%$, calculate partial half-life of $A$ for the conversion into $B$.

NTA AbhyasNTA Abhyas 2022

Solution:

$\frac{2 k _{1}}{2 k _{1}+3 k _{2}}=0.5$ and $k _{1}+ k _{2}=\frac{0.693}{1.386 \times 10^{2}}=5 \times 10^{-3} h ^{-1}$
Solving
$\frac{ k _{1}}{ k _{2}}=\frac{3}{2}$ and $k _{1}=3 \times 10^{-3} h ^{-1}$ and $k _{2}=2 \times 10^{-3} h ^{-1}$
$t _{1 / 2 (A \rightarrow B) }=\frac{0.693}{ k _{1}}=\frac{0.693}{3 \times 10^{-3}}=231 h$