Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Consider the following frequency distribution
x A 2A 3A 4A 5A
f 2 1 1 1 1

where, $A$ is a positive integer and has variance $160$. Then the value of $A$ is.

Statistics

Solution:

$x_i$ $f_i$ $ f_i x_i$ $f_i x_i^2$
A 2 2A $2A^2$
2A 1 2A $4A^2$
3A 1 3A $9A^2$
4A 1 4A $16A^2$
5A 1 5A $25A^2$
6A 1 6A $36A^2$
Total 7 22A $92A^2$

$\because \sigma^{2}=\frac{\sum f _{ i } x _{ i }^{2}}{\sum f _{ i }}-\left(\frac{\sum f _{ i } x _{ i }}{\sum f _{ i }}\right)$
$\Rightarrow 160=\frac{92 A ^{2}}{7}-\left(\frac{22 A }{7}\right)^{2}$
$\Rightarrow 160=\frac{92 A ^{2}}{7}-\frac{484 A ^{2}}{49} $
$\Rightarrow 160=\frac{92 \times 7 A ^{2}-484 A ^{2}}{49}$
$\Rightarrow 160 \times 49=644 A ^{2}-484 A ^{2} $
$\Rightarrow 160 A ^{2}=7840$
$\Rightarrow A ^{2}=\frac{7840}{160}$
$ \Rightarrow A ^{2}=49$
$ \Rightarrow A =\pm 7$
$A =7$ as $A$ is a positive integer.