Q.
Consider the following frequency distribution :
Class :
0-6
6 -12
12-18
18 - 24
24 - 30
Frequency
a
b
12
9
5
If mean $=\frac{309}{22}$ and median $=14$, then the value $(a-b)^{2}$ is equal to _____.
Class : | 0-6 | 6 -12 | 12-18 | 18 - 24 | 24 - 30 |
Frequency | a | b | 12 | 9 | 5 |
Solution:
Class
Frequency
$x_i$
$f_ix_i$
0-6
b
3
3a
6- 12
b
9
9b
12 -18
12
15
180
18 - 24
9
21
189
24 - 30
5
27
135
N = (26 + a + b)
(504 + 3a + 9b)
Mean $=\frac{3 a+9 b+180+189+135}{a+b+26}=\frac{309}{22} $
$\Rightarrow 66 a+198 b+11088=309 a+309 b+8034 $
$\Rightarrow 243 a+111 b=3054 $
$\Rightarrow 81 a+37 b=1018 \rightarrow(1) $
Now, Median$=12+\frac{\frac{a+b+26}{2}-(a+b)}{12} \times 6=14$
$\Rightarrow \frac{13}{2}-\left(\frac{a+b}{4}\right)=2 $
$\Rightarrow \frac{a+b}{4}=\frac{9}{2} $
$\Rightarrow a+b=18 \rightarrow(2)$
From equation (1) $\&(2)$
$a=8, b=10 $
$\therefore (a-b)^{2}=(8-10)^{2}$
Class | Frequency | $x_i$ | $f_ix_i$ |
---|---|---|---|
0-6 | b | 3 | 3a |
6- 12 | b | 9 | 9b |
12 -18 | 12 | 15 | 180 |
18 - 24 | 9 | 21 | 189 |
24 - 30 | 5 | 27 | 135 |
N = (26 + a + b) | (504 + 3a + 9b) |