Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Consider the following frequency distribution :
Class : 0-6 6 -12 12-18 18 - 24 24 - 30
Frequency a b 12 9 5

If mean $=\frac{309}{22}$ and median $=14$, then the value $(a-b)^{2}$ is equal to _____.

JEE MainJEE Main 2021Statistics

Solution:

Class Frequency $x_i$ $f_ix_i$
0-6 b 3 3a
6- 12 b 9 9b
12 -18 12 15 180
18 - 24 9 21 189
24 - 30 5 27 135
N = (26 + a + b) (504 + 3a + 9b)

Mean $=\frac{3 a+9 b+180+189+135}{a+b+26}=\frac{309}{22} $
$\Rightarrow 66 a+198 b+11088=309 a+309 b+8034 $
$\Rightarrow 243 a+111 b=3054 $
$\Rightarrow 81 a+37 b=1018 \rightarrow(1) $
Now, Median$=12+\frac{\frac{a+b+26}{2}-(a+b)}{12} \times 6=14$
$\Rightarrow \frac{13}{2}-\left(\frac{a+b}{4}\right)=2 $
$\Rightarrow \frac{a+b}{4}=\frac{9}{2} $
$\Rightarrow a+b=18 \rightarrow(2)$
From equation (1) $\&(2)$
$a=8, b=10 $
$\therefore (a-b)^{2}=(8-10)^{2}$