Q.
Consider the following frequency distribution.
Class
0-10
10-20
20-30
30-40
40-50
Frequency
5
x
10
y
15
If the sum of the frequencies is $50$ , and the median is $29$, then evaluate $|x-y|$.
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 5 | x | 10 | y | 15 |
Statistics
Solution:
Class
Frequency
c.f
0-10
5
5
10-20
x
5+x
20-30
10
15+x
30-40
y
15+x+y
40-50
15
30+x+y
Total
N=30+x+y
Sum of frequency $=50$
$\Rightarrow 30+x+y=50$
$\Leftrightarrow x+y=20\,\,\,...(i)$
Median $=29$
$\Rightarrow$ Median lies in the interval $20-30$
$\Rightarrow$ Median $=l_{1}+\frac{\left(\frac{ N }{2}- c . f \right)}{f} \times h$
$\Rightarrow$ Here $l_{1}=20, f=10$,
$ c.f =5+x, h=10$
$N =50$
$\Rightarrow 29=20+\frac{(25-(5+x))}{10} \times 10$
$\Rightarrow 9=20-x$
$\Rightarrow x=11\,\,\,...(ii)$
$y=9\,\ldots$ [From (i) and (ii)]
$\Rightarrow|x-y|=|11-9|=2$
Class | Frequency | c.f |
---|---|---|
0-10 | 5 | 5 |
10-20 | x | 5+x |
20-30 | 10 | 15+x |
30-40 | y | 15+x+y |
40-50 | 15 | 30+x+y |
Total | N=30+x+y |