Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Consider the following frequency distribution.
Class 0-10 10-20 20-30 30-40 40-50
Frequency 5 x 10 y 15

If the sum of the frequencies is $50$ , and the median is $29$, then evaluate $|x-y|$.

Statistics

Solution:

Class Frequency c.f
0-10 5 5
10-20 x 5+x
20-30 10 15+x
30-40 y 15+x+y
40-50 15 30+x+y
Total N=30+x+y

Sum of frequency $=50$
$\Rightarrow 30+x+y=50$
$\Leftrightarrow x+y=20\,\,\,...(i)$
Median $=29$
$\Rightarrow$ Median lies in the interval $20-30$
$\Rightarrow$ Median $=l_{1}+\frac{\left(\frac{ N }{2}- c . f \right)}{f} \times h$
$\Rightarrow$ Here $l_{1}=20, f=10$,
$ c.f =5+x, h=10$
$N =50$
$\Rightarrow 29=20+\frac{(25-(5+x))}{10} \times 10$
$\Rightarrow 9=20-x$
$\Rightarrow x=11\,\,\,...(ii)$
$y=9\,\ldots$ [From (i) and (ii)]
$\Rightarrow|x-y|=|11-9|=2$