Q.
Consider the following data
Group I
Group II
Group III
Number of observations
50
60
90
Mean
113
120
115
Standard deviation
6
8
7
With respect to the consistencies of the above groups, the increasing order of them is
Group I | Group II | Group III | |
---|---|---|---|
Number of observations | 50 | 60 | 90 |
Mean | 113 | 120 | 115 |
Standard deviation | 6 | 8 | 7 |
TS EAMCET 2018
Solution:
We have,
Group I
Group II
Group III
n
50
60
90
mean
113
120
115
S. D
6
8
7
Coefficient of variation $( CV )=\frac{\sigma}{\bar{x}} \times 100$
for group I $ CV _{1} =\frac{\sigma_{1}}{\bar{x}_{1}} \times 100 \%=\frac{6}{113} \times 100 \% $
$ CV _{1} =5309 \% $
for group II
$CV _{2}=\frac{8}{120} \times 100 \%=6.66 \%$
for group III $CV _{3}=\frac{7}{115} \times 100=6.086 \%$
Now, if CV of the data is less then data is more consistent.
Since, $CV _{1}<\,CV _{3}<\, CV _{2}$
$\therefore $ Increasing order of consistencies II < III < I
Group I | Group II | Group III | |
---|---|---|---|
n | 50 | 60 | 90 |
mean | 113 | 120 | 115 |
S. D | 6 | 8 | 7 |