Q. Consider the equation $\sin ^{-1}\left(x^2-6 x+\frac{17}{2}\right)+\cos ^{-1} k=\frac{\pi}{2}$, then
Inverse Trigonometric Functions
Solution:
For the solution of equation, we must have $\left(x^2-6 x+\frac{17}{2}\right)=k$, where $k \in[-1,1]$ and $\left( x ^2-6 x +\frac{17}{2}\right) \in[-1,1]$
