Q.
Consider the ellipse
$\frac{x^2}{4}+\frac{y^2}{3}=1 .$
Let $H (\alpha, 0), 0< \alpha< 2$, be a point. A straight line drawn through $H$ parallel to the $y$-axis crosses the ellipse and its auxiliary circle at points $E$ and $F$ respectively, in the first quadrant. The tangent to the ellipse at the point $E$ intersects the positive $x$-axis at a point $G$. Suppose the straight line joining $F$ and the origin makes an angle $\phi$ with the positive $x$-axis.
List I
List II
A
If $\phi=\frac{\pi}{4}$, then the area of the triangle $F G H$ is
P
$\frac{(\sqrt{3}-1)^4}{8}$
B
If $\phi=\frac{\pi}{3}$, then the area of the triangle $F G H$ is
Q
1
C
If $\phi=\frac{\pi}{6}$, then the area of the triangle $F G H$ is
R
$\frac{3}{4}$
D
If $\phi=\frac{\pi}{12}$, then the area of the triangle $F G H$ is
S
$\frac{1}{2 \sqrt{3}}$
T
$\frac{3 \sqrt{3}}{2}$
The correct option is:
List I | List II | ||
---|---|---|---|
A | If $\phi=\frac{\pi}{4}$, then the area of the triangle $F G H$ is | P | $\frac{(\sqrt{3}-1)^4}{8}$ |
B | If $\phi=\frac{\pi}{3}$, then the area of the triangle $F G H$ is | Q | 1 |
C | If $\phi=\frac{\pi}{6}$, then the area of the triangle $F G H$ is | R | $\frac{3}{4}$ |
D | If $\phi=\frac{\pi}{12}$, then the area of the triangle $F G H$ is | S | $\frac{1}{2 \sqrt{3}}$ |
T | $\frac{3 \sqrt{3}}{2}$ |
JEE AdvancedJEE Advanced 2022
Solution: