Q.
Consider $f ( x )=\left\{\frac{ x -\sin x }{5}\right\}$. If the number of points in $(0,20 \pi)$ where $f ( x )$ is non-derivable the different values of cof LMVT for the twice differentiable function $g(x)$ i.e. $g^{\prime}(c)=\frac{g(b)-g(a)}{b-a}$ for some $c \in( a , b )$ then the minimum number of points where $g ^{\prime \prime}( x )$ vanishes is $n$. Find the value of $\left[\frac{ n }{2}\right]$.
Note : $\{y\}$ and $[y]$ denotes fractional part and greatest integer function of y respectively.]
Application of Derivatives
Solution: