Q.
Consider, $f(x)=\frac{|x-4|}{|x|+1}$. If sum of all distinct possible values of $\sin ^{-1}(\sin [f(x)])$ is $a \pi+b$ then find the absolute value of $(a+b)$.
[Note: [z] denotes greatest integer function less than or equal to $z$.]
Inverse Trigonometric Functions
Solution: